Solución aproximada a la cuadratura del círculo Una construcción geométrica aproximada de la cuadratura del círculo con regla y compás debería cumplir los siguientes requisitos: 1) la aproximación de pi debería ser la mejor posible 2) el número de pasos debería ser el mínimo posible 3) la construcción debería poder hacerse siguiendo la lógica de cualquier problema: partir del dato ... para llegar a la solución, en este caso partir del radio del círculo (el dato) para llegar al lado del cuadrado (la solución). Según la figura partiendo del radio OF (dato) de la circunferencia a cuadrar se haya su mitad (punto A) y luego la mitad de esta, es decir la cuarta parte del radio, de modo que se obtenga un segmento igual a 5/4 del radio (segmento OB) y tomando como radio este segmento se traza una circunferencia con el mismo centro (O) de la circunferencia de partida: los puntos de corte de esta circunferencia con los ejes de coordenadas (C, D E y F) nos dan los cuatro vértices del cuadrado solución. Este ejemplo reúne las condiciones 2 y 3 pero el valor de pi utilizado es que es obviamente muy pobre (aunque con cierto valor histórico pues el que parece ser que utilizaban los babilonios 2000 años AC). (Nota: en los ejemplos se ha utilizado un radio elegido al azar en 30 unidades. Todos los dibujos son igualmente válidos con cualquier otra medida.) Volver