Cuadratura de superficies rectas
El interés por la resolución de este problema comenzó en la Antigua Grecia, que pronto cuadraron
superficies más o menos irregulares, limitadas por rectas (superficies poligonales).Una superfice es
cuadrable cuando, a partir de ella, es posible obtener geométricamente un cuadrado que tenga la misma
área que aquella. Desde un punto de vista práctico, cuadrar superficies irregulares permitía simplificar el
cálculo de sus áreas ya que, mientras podía costar mucho calcular el área de una superficie no regular,
el cálculo del área de su cuadrado equivalente sería muy fácil. Es decir, era posible cuadrar superficies
de lados rectilíneos.
Los griegos buscaron procedimientos geométricos para hallar la cuadratura de las distintas superficies. Usando
solo la regla y el compás.
Volver